चित्र में प्रदर्शित स्प्रिंगों से बने निकाय का परिणामी बल नियतांक होगा
$\frac{{{K_1}}}{2} + {K_2}$
${\left[ {\frac{1}{{2{K_1}}} + \frac{1}{{{K_2}}}} \right]^{ - 1}}$
$\frac{1}{{2{K_1}}} + \frac{1}{{{K_2}}}$
${\left[ {\frac{2}{{{K_1}}} + \frac{1}{{{K_1}}}} \right]^{ - 1}}$
एक $60\, kg$ भार का व्यक्ति चित्रानुसार एक स्प्रिंग तुला के क्षैतिज प्लेट फार्म पर खड़ा है। अब प्लेट फार्म $0.1\, m$ आयाम एवं $\frac{2}{\pi }Hz$ आवृत्ति से सरल आवर्त गति करने लगता है। निम्न में से कौन सा कथन सही है
समान बल नियतांक $k$ वाली तीन स्प्रिंगों $A, B$ और $C$ से $m$ द्रव्यमान का एक कण चित्र में दिखाये अनुसार जुड़ा है। यदि कण को स्प्रिंग $A$ के विरुद्ध हल्का सा दबा कर छोड़ा जाये तो दोलनकाल होगा
यदि $0.98\, kg$ द्रव्यमान की एक वस्तु $4.84\, N/m$, बल-नियतांक वाली स्प्रिंग पर दोलन करती हो तो वस्तु की कोणीय आवृत्ति ...... $ rad/s$ है
$k$ बल नियतांक की एक एकसमान स्प्रिंग को $1:2$ के दो भागों में बाँटा गया है, तो छोटे व बडे़ भाग के बल नियतांकों का अनुपात है
चित्रानुसार एक द्रव्यमान $M$ दो स्प्रिंगों $A$ तथा $B$ से चित्रानुसार लटकाया गया है। स्प्रिंगों के बल नियतांक क्रमषः $K_1$ तथा $K_2$ हैं। दोनों स्प्रिंगों की लम्बाई में कुल वृद्धि है