જ્યારે કોઈ સમાંતર શ્રેણીનું $9^{th}$ પદને તેના $2^{nd}$ પદ દ્વારા ભાગવામાં આવે તો ભાગફળ $5$ મળે અને જ્યારે $13^{th}$ પદને તેના $6^{th}$ પદ વડે ભાગવામાં આવે તો ભાગફળ $2$ અને શેષ $5$ મળે તો સમાંતર શ્રેણીનું પ્રથમ પદ મેળવો
$2$
$3$
$4$
$5$
જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, }}{{\text{a}}_{\text{3}}}{\text{, }}{\text{......, }}{{\text{a}}_{\text{n}}}$ સમાંતર શ્રેણી હોય તો $\frac{1}{{{a_1}{a_2}}}\,\, + \,\,\frac{1}{{{a_2}{a_3}}}\, + \,\frac{1}{{{a_3}{a_4}}}\,\, + \,\,......\,\, + \,\frac{1}{{{a_{n - 1}}{a_n}}}\,\, = \,\,......$
$a_1, a_2, a_3, ….a_n$ સમાંતર શ્રેણીમાં છે. જો તેનો સામાન્ય તફાવત $d$ હોય, તો $sin\,\, d[cosec\ a_1 . cosec\ a_2 + cosec\ a_2 . cosec\ a_3 +….+cosec\ a_{n -1} . cosec\ a_n] $ ની કિમત મેળવો.
$\Delta ABC$ માં $A, B, C $ માંથી સામેની બાજુઓ પર દારેલા વેધ સ્વરિત શ્રેણીમાં હોય તો $sinA, sinB, sinC ............. $ શ્રેણીમાં હોય
$7$ અને $71$ વચ્ચે $n$ સમાંતર મધ્યકો આવેલા છે. જો $5$ મો સમાંતર મધ્યક $27$ હોય તો $n=......$
સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $3n^2 + 5n$ હોય અને $T_m = 164$ હોય તો $m = ….$