एक उदासीन धात्विक गोले से जब ${10^{14}}$ इलेक्ट्रॉन हटाये जाते हैं, तो गोले पर आवेश हो जाता है
$16$
$ - 16$
$32$
$ - 32$
उपेक्षणीय आयतन के दो सर्वसम चालक गोलों पर $2.1\, nC$ और $-0.1\, nC$ के आवेश हैं। इस दोनों को सम्पर्क में लाकर फिर $0.5 \,m$ की दूरी पर रख दिया गया है। इन दोनों गोलों के बीच स्थिर विधुत बल $.....\,\times 10^{-9} N$ होगा।
[दिया है : $4 \pi \varepsilon_{0}=\frac{1}{9 \times 10^{9}} \,SI$ मात्रक]
$3 ×10 ^{-6}\, C$ एवं $8 ×10 ^{-6} \, C$ के दो बिन्दु आवेश एक दूसरे को $ 6 ×10^{-6}\, N$ के बल से प्रतिकर्षित करते हैं। यदि प्रत्येक को $-6 ×10 ^{-6}\, C$ का अतिरिक्त आवेश दे दिया जाये तो इनके मध्य बल होगा
विद्युत-चुम्बकीय, वाण्डरवॉल, स्थिरवैद्युत और नाभिकीय बल, इनमें कौन-से दो बलों के कारण न्यूट्रॉनों के मध्य आकर्षण का बल रहता है
समान रूप से आवेशित दो एक समान गेंदें एक दूसरे से कुछ दूरी पर स्थित हैं एवं इनके मध्य एक निश्चित बल कार्यरत् है यदि इन्हें सम्पर्क में लाकर पुन: एक दूसरे से पहले की तुलना में आधी दूरी पर रख दें तो इनके मध्य बल पहले की तुलना में $4.5$ गुना हो जाता है। गेंदों के प्रारम्भिक आवेशों का अनुपात होगा
$x-$ अक्ष के बिन्दुओं $x =- a$ तथा $x = a$ में प्रत्येक पर समान आवेश $q$ रखा हैं, तथा इसके केन्द्र पर $m$ द्रव्यमान तथा $q _{0}=\frac{ q }{2}$ आवेश का एक कण रखा हैं। यदि आवेश $q_0$ को $y-$ अक्ष के अनुदिश अल्प दूरी $( y << a )$ विस्थापित किया जाए, तो कण पर लगने वाला परिणामी बल समानुपाती होगा,