- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
Which of the following determinant $(s)$ vanish $(es)$ ?
A$\left| {\,\begin{array}{*{20}{c}}1&{b\,c}&{b\,c\,\,(b\,\, + \,\,c)}\\1&{c\,a}&{c\,a\,\,(c\,\, + \,\,a)}\\1&{a\,b}&{a\,b\,\,(a\,\, + \,\,b)}\end{array}\,} \right|$
B$\left| {\,\begin{array}{*{20}{c}}1&{a\,b}&{{\textstyle{1 \over a}}\,\, + \,\,{\textstyle{1 \over b}}}\\1&{b\,c}&{{\textstyle{1 \over b}}\,\, + \,\,{\textstyle{1 \over c}}}\\
1&{c\,a}&{{\textstyle{1 \over c}}\,\, + \,\,{\textstyle{1 \over a}}}\end{array}\,} \right|$
C$\left| {\,\begin{array}{*{20}{c}}0&{a\,\, - \,\,b}&{a\,\, - \,\,c}\\{b\,\, - \,\,a}&0&{b\,\, - \,\,c}\\{c\,\, - \,\,a}&{c\,\, - \,\,b}&0\end{array}\,} \right|$
DAll of the above
Solution
Solution is Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
Standard 12
Mathematics