નીચેનામાંથી ક્યુ સાચુ છે ?
$\sqrt {{x^2}} = \,\left| x \right|$
${x^{x + 1}}\, = \,x.{x^x}$
$\frac{{\left| x \right|}}{x} = \left\{ \begin{array}{l} 1:x > 0\\ - 1:x < 0 \end{array} \right.$
બધા જ
વિધેય $f(x ) = x^3 - 2x + 2$ છે.જો વાસ્તવિક સંખ્યા $a$, $b$ અને $c$ માટે $\left| {f\left( a \right)} \right| + \left| {f\left( b \right)} \right| + \left| {f\left( c \right)} \right| = 0$ થાય તો ${f^2}\left( {{a^2} + \frac{2}{a}} \right) + {f^2}\left( {{b^2} + \frac{2}{b}} \right) - {f^2}\left( {{c^2} + \frac{2}{c}} \right)$ ની કિમત ........ થાય
ધારોકે $f: R \rightarrow R$ એવો વિધેય છે કે જ્યાં $f(x)=\frac{x^2+2 x+1}{x^2+1}$ તો
જો $f(x)$ માટે $f(7 -x) = f(7 + x)\ \forall \,x\, \in \,R$ મળે કે જેથી $f(x)$ ને $5$ ભિન્ન વાસ્તવિક બીજો મળે કે જેનો સરવાળો $S$ થાય તો $S/7$ ની કિમત ......... થાય.
આપલે વિધેય $f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},\;(a > 2)$. તો $f(x + y) + f(x - y) = $
વિધેય $f(x) = \frac{x}{{1 + \left| x \right|}},\,x \in R,$ નો વિસ્તાર મેળવો.