If $p$ : It rains today, $q$ : I go to school, $r$ : I shall meet any friends and $s$ : I shall go for a movie, then which of the following is the proposition : If it does not rain or if I do not go to school, then I shall meet my friend and go for a movie.
$\sim (p \wedge q) \Rightarrow (r \wedge s)$
$\sim (p\; \wedge \sim q) \Rightarrow (r \wedge s)$
$\sim (p\; \wedge q)\; \Rightarrow (r \vee s)$
None of these
Which of the following statement is true
Negation of the Boolean expression $p \Leftrightarrow( q \Rightarrow p )$ is.
$\sim (p \Rightarrow q) \Leftrightarrow \sim p\; \vee \sim q$ is
$\sim p \wedge q$ is logically equivalent to
The Boolean expression $\left(\sim\left(p^{\wedge} q\right)\right) \vee q$ is equivalent to