1.Relation and Function
medium

Which of the following is not correct for relation $\mathrm{R}$ on the set of real numbers ?

A

$(\mathrm{x}, \mathrm{y}) \in \mathrm{R} \Leftrightarrow 0<|\mathrm{x}|-|\mathrm{y}| \leq 1$ is neither transitive nor symmetric.

B

$(x, y) \in R \Leftrightarrow 0<|x-y| \leq 1$ is symmetric and transitive.

C

$(x, y) \in R \Leftrightarrow|x|-|y| \leq 1$ is reflexive but not symmetric.

D

$(\mathrm{x}, \mathrm{y}) \in \mathrm{R} \Leftrightarrow|\mathrm{x}-\mathrm{y}| \leq 1$ is reflexive and symmetric.

(JEE MAIN-2021)

Solution

Note that $(1,2)$ and $(2,3)$ satisfy $0<|x-y| \leq 1$

but $(1,3)$ does not satisfy it so

$0 \leq|\mathrm{x}-\mathrm{y}| \leq 1$ is symmetric but not transitive

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.