The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to
$B \Rightarrow( A \Rightarrow B )$
$A \Rightarrow( A \Leftrightarrow B )$
$A \Rightarrow((\sim A ) \Rightarrow B )$
$B \Rightarrow((\sim A ) \Rightarrow B )$
The negation of $(p \wedge(\sim q)) \vee(\sim p)$ is equivalent to
$p \Rightarrow q$ can also be written as
The contrapositive of the statement "If it is raining, then I will not come", is
The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to
The logically equivalent of $p \Leftrightarrow q$ is :-