Which of the following statement is true

  • A

    $ \sim (p \leftrightarrow   \sim q)$ is tautology

  • B

    $ \sim (p  \leftrightarrow  \sim q)$ is equivalent to $p  \leftrightarrow  q$

  • C

    $(\,p\, \wedge \, \sim q)$ is a fallacy

  • D

    $(\,p\, \wedge \, \sim q)\, \wedge \,( \sim p\, \wedge \,q)$ is a tautology

Similar Questions

Which one of the following, statements is not a tautology

  • [JEE MAIN 2019]

Let $r \in\{p, q, \sim p, \sim q\}$ be such that the logical statement $r \vee(\sim p) \Rightarrow(p \wedge q) \vee r \quad$ is a tautology. Then ' $r$ ' is equal to

  • [JEE MAIN 2022]

The statement $(\sim( p \Leftrightarrow \sim q )) \wedge q$ is :

  • [JEE MAIN 2022]

Negation of $(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$ is

  • [JEE MAIN 2023]

The negation of the statement

"If I become a teacher, then I will open a school", is

  • [AIEEE 2012]