Which of the following statements are true about acceleration due to gravity?

$(a)\,\,'g'$ decreases in moving away from the centre if $r > R$

$(b)\,\,'g'$ decreases in moving away from the centre if $r < R$

$(c)\,\,'g'$ is zero at the centre of earth

$(d)\,\,'g'$ decreases if earth stops rotating on its axis

  • A

    $(a)$ and $(b)$

  • B

    $(a)\,(b)$ and $(c)$

  • C

    $(a)$ and $(c)$

  • D

    $(a),\,(b),\,(c)$ and $(d)$

Similar Questions

Masses and radii of earth and moon are $M_1,\, M_2$ and $R_1,\, R_2$ respectively. The distance between their centre is $'d'$ . The minimum velocity given to mass $'M'$ from the mid point of line joining their centre so that it will escape

A small ball of mass $'m'$ is released at a height $'R'$ above the Earth surface, as shown in the figure. If the maximum depth of the ball to which it goes is $R/2$ inside the Earth through a narrow grove before coming to rest momentarily. The grove, contain an ideal spring of spring constant $K$ and natural length $R,$ the value of $K$ is ( $R$ is radius of Earth and $M$ mass of Earth)

If the acceleration due to gravity at earth is $'g'$ and mass of earth is $80$ times that of moon and radius of earth is $4$ times that of moon, the value of acceleration due to gravity at the surface of moon will be

The orbit of geostationary satellite is circular, the time period of satellite depends on $(i)$ mass of the satellite $(ii)$ mass of the earth $(iii)$ radius of the orbit $(iv)$ height of the satellite from the surface of the earth

The change in the value of $‘g’$ at a height $‘h’$ above the surface of the earth is the same as at a depth $‘d’$ below the surface of earth. When both $‘d’$ and $‘h’$ are much smaller than the radius of earth, then which one of the following is correct?