Which one of the following is the common tangent to the ellipses, $\frac{{{x^2}}}{{{a^2} + {b^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $=1\&$ $ \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{a^2} + {b^2}}}$ $=1$

  • A

    $ay = bx +\sqrt {{a^4} - {a^2}{b^2} + {b^4}} $

  • B

    $by = ax -\sqrt {{a^4} + {a^2}{b^2} + {b^4}} $

  • C

    $ay = bx -\sqrt {{a^4} + {a^2}{b^2} + {b^4}} $

  • D

    $by = ax +\sqrt {{a^4} - {a^2}{b^2} + {b^4}} $

Similar Questions

A wall is inclined to the floor at an angle of $135^{\circ}$. A ladder of length $l$ is resting on the wall. As the ladder slides down, its mid-point traces an arc of an ellipse. Then, the area of the ellipse is

  • [KVPY 2016]

If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}}\, + \,\frac{{{y^2}}}{{{b^2}}}\, = \,1(a\, > \,b)$  is twice the area of the ellipse, then the eccentricity of the  ellipse is

The equation of the chord, of the ellipse $\frac{ x ^2}{25}+\frac{ y ^2}{16}=1$, whose mid-point is $(3,1)$ is :

  • [JEE MAIN 2025]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $36 x^{2}+4 y^{2}=144$

Let $A = \left\{ {\left( {x,y} \right):\,y = mx + 1} \right\}$ 

      $B = \left\{ {\left( {x,y} \right):\,\,{x^2} + 4{y^2} = 1} \right\}$ 

$C = \left\{ {\left( {\alpha ,\beta } \right):\,\left( {\alpha ,\beta } \right) \in A\,\,and\,\,\left( {\alpha ,\beta } \right) \in B\,\,and\,\alpha \, > 0} \right\}$ . 

If set $C$ is singleton set then sum of all possible values of $m$ is