Which one of the relation is correct between time period and number of orbits while an electron is revolving in a orbit

  • A

    ${n^2}$

  • B

    $\frac{1}{{{n^2}}}$

  • C

    ${n^3}$

  • D

    $\frac{1}{n}$

Similar Questions

What is the percentage of $\alpha -$ particles that have more than $1^o$ scattering in Geiger-Marsden experiment? 

Describe Geiger-Marsden scattering experiment. 

In Rutherford scattering experiment, what will be the correct angle for $\alpha $ scattering for an impact parameter $b = 0$.....$^o$

In a Geiger-Marsden experiment, what is the distance of closest approach to the nucleus of a $7.7 \;MeV$ $\alpha -$particle before it comes momentarily to rest and reverses its direction?

Answer the following questions, which help you understand the difference between Thomson's model and Rutherford's model better.

$(a)$ Is the average angle of deflection of $\alpha$ -particles by a thin gold foil predicted by Thomson's model much less, about the same, or much greater than that predicted by Rutherford's model?

$(b)$ Is the probability of backward scattering (i.e., scattering of $\alpha$ -particles at angles greater than $90^{\circ}$ ) predicted by Thomson's model much less, about the same, or much greater than that predicted by Rutherford's model?

$(c)$ Keeping other factors fixed, it is found experimentally that for small thickness $t,$ the number of $\alpha$ -particles scattered at moderate angles is proportional to $t$. What clue does this linear dependence on $t$ provide?

$(d)$ In which model is it completely wrong to ignore multiple scattering for the calculation of average angle of scattering of $\alpha$ -particles by a thin foil?