The contrapositive of $(p \vee q) \Rightarrow r$ is

  • A

    $r \Rightarrow (p \vee q)$

  • B

    $\sim r \Rightarrow (p \vee q)$

  • C

    $\sim r \Rightarrow \;\sim p\; \wedge \sim q$

  • D

    $p \Rightarrow (q \vee r)$

Similar Questions

Let $p , q , r$ be three logical statements. Consider the compound statements $S _{1}:((\sim p ) \vee q ) \vee((\sim p ) \vee r ) \text { and }$ and $S _{2}: p \rightarrow( q \vee r )$ Then, which of the following is NOT true$?$

  • [JEE MAIN 2022]

Statement $\quad(P \Rightarrow Q) \wedge(R \Rightarrow Q)$ is logically equivalent to

  • [JEE MAIN 2023]

The contrapositive of the statement "If I reach the station in time, then I will catch the train" is 

  • [JEE MAIN 2020]

If $(p \wedge \sim q) \wedge r  \to \sim r$ is $F$ then truth value of $'r'$ is :-

$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when $r$ is.

  • [JEE MAIN 2022]