Gujarati
Hindi
5.Work, Energy, Power and Collision
normal

Work done in time $t$ on a body of mass $m$ which is accelerated from rest to a speed $v$ in time $t_1$ as a function of time $t$ is given by

A

$\frac{1}{2}m\frac{v}{{{t_1}}}\,{t^2}$

B

$m\frac{v}{{{t_1}}}\,{t^2}$

C

$\frac{1}{2}{\left( {\frac{{mv}}{{{t_1}}}} \right)^2}\,{t^2}$

D

$\frac{1}{2}m\frac{{{v^2}}}{{t_1^2}}\,{t^2}$

Solution

$ \mathrm{v}=\mathrm{u} +\mathrm{at}_{1} $

$ \mathrm{u}=0  \Rightarrow \mathrm{a}=\frac{\mathrm{v}}{\mathrm{t}_{1}} $

Work $=\Delta \mathrm{k}=\mathrm{k}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}} $

$=\frac{1}{2} \mathrm{mv}^{2}-\Delta=\frac{1}{2} \mathrm{m}[\mathrm{at}]^{2}=\frac{1}{2} \mathrm{ma}^{2} \mathrm{t}^{2} $

Work $ =\frac{1}{2} \mathrm{m}\left[\frac{\mathrm{v}}{\mathrm{t}_{1}}\right]^{2} \mathrm{t}^{2} $

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.