Write equation of energy density of electromagnetic waves.
For the plane electromagnetic wave given by $\mathrm{E}=\mathrm{E}_0 \sin (\omega \mathrm{t}-\mathrm{kx})$ and $\mathrm{B}=\mathrm{B}_0 \sin (\omega \mathrm{t}-\mathrm{kx})$, the ratio of average electric energy density to average magnetic energy density is
When $EM$ wave propagates through vacuum then
For a transparent medium relative permeablity and permittlivity, $\mu_{\mathrm{r}}$ and $\epsilon_{\mathrm{r}}$ are $1.0$ and $1.44$ respectively. The velocity of light in this medium would be,
Show that the radiation pressure exerted by an $EM$ wave of intensity $I$ on a surface kept in vacuum is $\frac{I}{c}$.
In an electromagnetic wave, at an instant and at a particular position, the electric field is along the negative $z$-axis and magnetic field is along the positive $x$-axis. Then the direction of propagation of electromagnetic wave is