જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=n \frac{n^{2}+5}{4}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=1,2,3,4,5,$ we obtain

$a_{1}=1 \cdot \frac{1^{2}+5}{4}=\frac{6}{4}=\frac{3}{2}$

$a_{2}=2 \cdot \frac{2^{2}+5}{4}=2 \cdot \frac{9}{4}=\frac{9}{2}$

$a_{3}=3 \cdot \frac{3^{2}+5}{4}=3 \cdot \frac{14}{4}=\frac{21}{2}$

$a_{4}=4 \cdot \frac{4^{2}+5}{4}=21$

$a_{5}=5 \cdot \frac{5^{2}+5}{4}=5 \cdot \frac{30}{4}=\frac{75}{2}$

Therefore, the required terms are $\frac{3}{2}, \frac{9}{2}, \frac{21}{2}, 21$ and $\frac{75}{2}$

Similar Questions

એક માણસ $4500$ ચલણી નોટોની ગણતરી કરે છે. ધારો કે $a_n $ નોટોની સંખ્યા દર્શાવે છે. તે $n$ મિનીટમાં ગણતરી કરે છે. જો $a_1$ = $a_2$ = … = $a_1$0 $= 150$ અને $a_{10}, a_{11},.....$  સમાંતર શ્રેણીના સામાન્ય તફાવત $-2$  સાથે હોય, તો તેના દ્વારા બધી નોટોની ગણતરી કરવા માટે લાગતો સમય કેટલા .............. મિનિટ હશે ?

$\Delta ABC$  માં $A, B, C $ માંથી સામેની બાજુઓ પર દારેલા વેધ સ્વરિત શ્રેણીમાં હોય તો $sinA, sinB, sinC ............. $ શ્રેણીમાં હોય

જો ${\log _5}2,\,{\log _5}({2^x} - 3)$ અને ${\log _5}(\frac{{17}}{2} + {2^{x - 1}})$ એ સમાંતર શ્રેણી માં હોય તો $x$ ની કિમત મેળવો 

જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=n(n+2)$

$x \geqslant 0$ માટે $4^{1+x}+4^{1-x}, \frac{\mathrm{K}}{2}, 16^x+16^{-x}$ એ એક સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદો હોય, તો $\mathrm{K}$ નું ન્યૂનતમ મૂલ્ય ........... છે.

  • [JEE MAIN 2024]