If $n$ is the smallest natural number such that $n+2 n+3 n+\ldots+99 n$ is a perfect square, then the number of digits of $n^2$ is

  • [KVPY 2015]
  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    more than $3$

Similar Questions

If ${S_k}$ denotes the sum of first $k$ terms of an arithmetic progression whose first term and common difference are $a$ and $d$ respectively, then ${S_{kn}}/{S_n}$ be independent of $n$ if

The $20^{\text {th }}$ term from the end of the progression $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots .,-129 \frac{1}{4}$ is :-

  • [JEE MAIN 2024]

If $x_1 , x_2 ,  ..... , x_n$ and $\frac{1}{{{h_1}}},\frac{1}{{{h^2}}},......\frac{1}{{{h_n}}}$ are two $A.P' s$ such that $x_3 = h_2 = 8$ and $x_8 = h_7 = 20$, then $x_5. h_{10}$ equals

  • [JEE MAIN 2018]

The sum of $24$ terms of the following series $\sqrt 2 + \sqrt 8 + \sqrt {18} + \sqrt {32} + .........$ is

The sum of $n$ terms of two arithmetic progressions are in the ratio $(3 n+8):(7 n+15) .$ Find the ratio of their $12^{\text {th }}$ terms.