If $n$ is the smallest natural number such that $n+2 n+3 n+\ldots+99 n$ is a perfect square, then the number of digits of $n^2$ is
$1$
$2$
$3$
more than $3$
If $a_1, a_2, a_3, …….$ are in $A.P.$ such that $a_1 + a_7 + a_{16} = 40$, then the sum of the first $15$ terms of this $A.P.$ is
If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and $a,\;b,\;c$ are in $G.P.$, then $x,\;y,\;z$ will be in
If ${a_1},\;{a_2},\;{a_3}.......{a_n}$ are in $A.P.$, where ${a_i} > 0$ for all $i$, then the value of $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = $
The sum of $24$ terms of the following series $\sqrt 2 + \sqrt 8 + \sqrt {18} + \sqrt {32} + .........$ is
The number of $5 -$tuples $(a, b, c, d, e)$ of positive integers such that
$I.$ $a, b, c, d, e$ are the measures of angles of a convex pentagon in degrees
$II$. $a \leq b \leq c \leq d \leq e$
$III.$ $a, b, c, d, e$ are in arithmetic progression is