કણોના તંત્રના કુલ રેખીય વેગમાનના સંરક્ષણનો નિયમ લખો.
કણોના તંત્રની ગતિનું દ્રવ્યમાન કેન્દ્રની ગતિ અને દ્રવ્યમાન કેન્દ્રને અનુલક્ષીને ગતિમાં વિભાજન :
$(a)$ બતાવો કે $p = p_i^{\prime} + {m_i}V$
જ્યાં ${p_i}$ એ $i$ મા કણ ( ${m_i}$ દળના)નું વેગમાન અને $p_i^{\prime} = {m_i}v_i^{\prime} $
નોંધ $v_i^{\prime} $ દ્રવ્યમાન કેન્દ્રની સાપેક્ષે $i$ મા કણનો વેગ છે.
આ ઉપરાંત દ્રવ્યમાન કેન્દ્રની વ્યાખ્યાનો ઉપયોગ કરીને સાબિત કરો કે $\sum {p_i^{\prime} } = 0$
$(b)$ બતાવો કે $K=K^{\prime}+1 / 2 M V^{2}$
જ્યાં $K$ એ કણોના તંત્રની કુલ ગતિઊર્જા છે. $K'$ એ જ્યારે કણોના વેગોને દ્રવ્યમાન કેન્દ્રના સંદર્ભમાં લેવામાં આવે છે ત્યારની અને $M V^{2} / 2$ એ સમગ્ર તંત્રની સ્થાનાંતરણની ગતિ ઊર્જા છે. (એટલે કે તંત્રના દ્રવ્યમાન કેન્દ્રની ગતિ). આ પરિણામ પરિચ્છેદ માં ઉપયોગમાં લીધેલ છે.
$(c)$ દર્શાવો કે $L = L ^{\prime}+ R \times M V$ છે.
જ્યાં $L ^{\prime}=\sum r _{i}^{\prime} \times p _{i}^{\prime}$ એ તંત્રના દ્રવ્યમાન કેન્દ્રની સાપેક્ષે તંત્રનું કોણીય વેગમાન છે. જ્યાં વેગોને દ્રવ્યમાન કેન્દ્રની સાપેક્ષે લીધેલ છે. યાદ રાખો $r _{i}^{\prime}= r _{i}- R$; બાકીની બધી સંજ્ઞાઓ એ પ્રકરણમાં ઉપયોગમાં લેવાયેલ પ્રમાણભૂત સંજ્ઞાઓ છે. નોંધો $L'$ અને $M R \times V$ એ અનુક્રમે દ્રવ્યમાન કેન્દ્રને અનુલક્ષીને તંત્રનું કોણીય વેગમાન અને કણોના તંત્રના દ્રવ્યમાન કેન્દ્રનું કોણીય વેગમાન કહેવામાં આવે છે.
$(d)$ બતાવો કે : = $\frac{d L ^{\prime}}{d t}=\sum r _{i}^{\prime} \times \frac{d p ^{\prime}}{d t}$
વધુમાં, દર્શાવો કે $\frac{d L ^{\prime}}{d t}=\tau_{e x t}^{\prime}$
જ્યાં $\tau_{c t t}^{\prime}$ એ આ તંત્ર પર દ્રવ્યમાન કેન્દ્રને અનુલક્ષીને લાગતા તમામ બાહ્ય ટૉર્કનો સરવાળો છે. (સૂચના : દ્રવ્યમાન કેન્દ્રની વ્યાખ્યા અને ન્યૂટનના ત્રીજા નિયમનો ઉપયોગ કરો. એમ ધારો કે કોઈ પણ બે કણો વચ્ચે લાગતું આંતરિક બળ આ બે કણોને જોડતી રેખાની દિશામાં લાગે છે.)
એક અવકાશયાન કે જેનુ દળ $M$ છે. તે $V$ જેટલા વેગથી ગતિ કરે છે અને અચાનક બે ભાગમાં ફાટે છે. તેનો એક $m$ દળનો ભાગ સ્થિર લઇ જાય છે. ત્યારે બીજા ભાગનો વેગ કેટલો હશે?
રેખીય સરળ આવર્તગતિ કરતા એક કણ માટે સ્થિતિઊર્જા વિધય $V(x)=$ $k x^{2} / 2$ આપેલ છે, જ્યાં $k$ દોલકનો બળ અચળાંક છે. $k=0.5\; N m ^{-1}$ માટે, $V(x)$ વિરુદ્ધ $x$ નો આલેખ આકૃતિ માં દર્શાવ્યો છે. દર્શાવો કે આ સ્થિતિમાં $1 \;J$ જેટલી કુલ ઊર્જા ધરાવતો ગતિ કરતો કણ $x=\pm 2 m$ પહોંચે એટલે “પાછો જ ફરવો જોઈએ.
$2\; mm$ ત્રિજ્યાનું વરસાદનું એક ટીપું $500 \;m$ ઊંચાઈએથી જમીન પર પડે છે. ઘટતા પ્રવેગથી (હવાના શ્યાનતા અવરોધને કારણે) તે મૂળ ઊંચાઈએથી અડધી ઊંચાઈ પ્રાપ્ત ના કરે ત્યાં સુધી પડે છે, જ્યાં તે અંતિમ (ટર્મિનલ) ઝડપ પ્રાપ્ત કરે છે અને ત્યાર બાદ તે એકધારી (સમાન) ઝડપથી ગતિ કરે છે. તેની સફરના પ્રથમ અને બીજા અડધા ભાગ દરમિયાન ગુરુત્વાકર્ષણ બળ વડે ટીપાં પર થયેલ કાર્ય કેટલું હશે ? જો તે 1$10\; m s ^{-1} $ ની ઝડપથી તેની સફર પૂરી કરીને જમીન પર પડે, તો તેની આ સફર દરમિયાન અવરોધક બળ વડે ટીપાં પર કેટલું કાર્ય થયું હશે ?
ઊર્જા સંરક્ષણનો નિયમ શું નિર્દેંશ કરે છે?