Write the law of radioactive decay.
A piece of wood from a recently cut tree shows $20\,decays$ per minute. A wooden piece of same size placed in a museum ( obtained from a tree cut many years back) shows $2\,decays$ per minute. If half life of $C^{14}$ is $5730\, years$, then age of the wooden piece placed in the museum is approximately ........... $years$
The radioactivity of a given sample of whisky due to tritium (half life $12.3$ years) was found to be only $3\%$ of that measured in a recently purchased bottle marked $"7$ years old". The sample must have been prepared about
$90\%$ of a radioactive sample is left undecayed after time $t$ has elapsed. What percentage of the initial sample will decay in a total time $2t$ : ..............$\%$
Starting with a sample of pure ${}^{66}Cu,\frac{7}{8}$ of it decays into $Zn$ in $15\, minutes$. The corresponding half life is..........$minutes$
An accident in a nuclear laboratory resulted in deposition of a certain amount of radioactive material of half-life $18$ days inside the laboratory. Tests revealed that the radiation was $64$ times more than the permissible level required for safe operation of the laboratory. What is the minimum number of days after which the laboratory can be considered safe for use?