Decide, among the following sets, which sets are subsets of one and another:
$A = \{ x:x \in R$ and $x$ satisfy ${x^2} - 8x + 12 = 0 \} ,$
$B=\{2,4,6\}, C=\{2,4,6,8 \ldots\}, D=\{6\}$
List all the elements of the following sers :
$A = \{ x:x$ is an odd natural number $\} $
The smallest set $A$ such that $A \cup \{1, 2\} = \{1, 2, 3, 5, 9\}$ is
Which of the following pairs of sets are equal ? Justify your answer.
$A = \{ \,n:n \in Z$ and ${n^2}\, \le \,4\,\} $ and $B = \{ \,x:x \in R$ and ${x^2} - 3x + 2 = 0\,\} .$
In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If $x \in A$ and $A \in B,$ then $x \in B$