Young's modulus of elasticity $Y$ is expressed in terms of three derived quantities, namely, the gravitational constant $G$, Planck's constant $h$ and the speed of light $c$, as $Y=c^\alpha h^\beta G^\gamma$. Which of the following is the correct option?

  • [IIT 2023]
  • A

    $\alpha=7, \beta=-1, \gamma=-2$

  • B

    $\alpha=-7, \beta=-1, \gamma=-2$

  • C

    $\alpha=7, \beta=-1, \gamma=2$

  • D

    $\alpha=-7, \beta=1, \gamma=-2$

Similar Questions

Young-Laplace law states that the excess pressure inside a soap bubble of radius $R$ is given by $\Delta P=4 \sigma / R$, where $\sigma$ is the coefficient of surface tension of the soap. The EOTVOS number $E_0$ is a dimensionless number that is used to describe the shape of bubbles rising through a surrounding fluid. It is a combination of $g$, the acceleration due to gravity $\rho$ the density of the surrounding fluid $\sigma$ and a characteristic length scale $L$ which could be the radius of the bubble. A possible expression for $E_0$ is 

  • [KVPY 2013]

Sometimes it is convenient to construct a system of units so that all quantities can be expressed in terms of only one physical quantity. In one such system, dimensions of different quantities are given in terms of a quantity $X$ as follows: [position $]=\left[X^\alpha\right] ;[$ speed $]=\left[X^\beta\right]$; [acceleration $]=\left[X^{ p }\right]$; [linear momentum $]=\left[X^{ q }\right]$; [force $]=\left[X^{ I }\right]$. Then -

$(A)$ $\alpha+p=2 \beta$

$(B)$ $p+q-r=\beta$

$(C)$ $p-q+r=\alpha$

$(D)$ $p+q+r=\beta$

  • [IIT 2020]

What is the dimensional formula of $a b^{-1}$ in the equation $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$, where letters have their usual meaning.

  • [JEE MAIN 2024]

In a typical combustion engine the work done by a gas molecule is given $W =\alpha^{2} \beta e ^{\frac{-\beta x ^{2}}{ KT }}$, where $x$ is the displacement, $k$ is the Boltzmann constant and $T$ is the temperature. If $\alpha$ and $\beta$ are constants, dimensions of $\alpha$ will be

  • [JEE MAIN 2021]

The frequency of vibration $f$ of a mass $m$ suspended from a spring of spring constant $K$ is given by a relation of this type $f = C\,{m^x}{K^y}$; where $C$ is a dimensionless quantity. The value of $x$ and $y$ are

  • [AIPMT 1990]