Young's modulus of elasticity $Y$ is expressed in terms of three derived quantities, namely, the gravitational constant $G$, Planck's constant $h$ and the speed of light $c$, as $Y=c^\alpha h^\beta G^\gamma$. Which of the following is the correct option?

  • [IIT 2023]
  • A

    $\alpha=7, \beta=-1, \gamma=-2$

  • B

    $\alpha=-7, \beta=-1, \gamma=-2$

  • C

    $\alpha=7, \beta=-1, \gamma=2$

  • D

    $\alpha=-7, \beta=1, \gamma=-2$

Similar Questions

The position of a particle at time $t$ is given by the relation $x(t) = \left( {\frac{{{v_0}}}{\alpha }} \right)\,\,(1 - {e^{ - \alpha t}})$, where ${v_0}$ is a constant and $\alpha > 0$. The dimensions of ${v_0}$ and $\alpha $ are respectively

A famous relation in physics relates 'moving mass' $m$ to the 'rest mass' $m_{0}$ of a particle in terms of its speed $v$ and the speed of light, $c .$ (This relation first arose as a consequence of special relativity due to Albert Einstein). A boy recalls the relation almost correctly but forgets where to put the constant $c$. He writes:

$m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$

Guess where to put the missing $c$

Choose the correct match

List I 

List II

 $(i)$ Curie

 $(A)$ $ML{T^{ - 2}}$

 $(ii)$ Light year 

 $(B)$ $M$

 $(iii)$ Dielectric strength

 $(C)$ Dimensionless

 $(iv)$ Atomic weight

 $(D)$ $T$

 $(v)$ Decibel

 $(E)$ $M{L^2}{T^{ - 2}}$

 

 $(F)$ $M{T^{ - 3}}$

 

 $(G)$ ${T^{ - 1}}$

 

 $(H)$ $L$

 

 $(I)$ $ML{T^{ - 3}}{I^{ - 1}}$

 

 $(J)$ $L{T^{ - 1}}$

  • [IIT 1992]

From the following combinations of physical constants (expressed through their usual symbols) the only combination, that would have the same value in different systems of units, is

  • [JEE MAIN 2014]

Dimensional formula for torque is

  • [AIIMS 2011]