A new system of units is proposed in which unit of mass is $\alpha $ $kg$, unit of length $\beta $ $m$ and unit of time $\gamma $ $s$. How much will $5\,J$ measure in this new system ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store
$[$ Energy $]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
Let $\mathrm{M}_{1}, \mathrm{~L}_{1}, \mathrm{~T}_{1}$ and $\mathrm{M}_{2}, \mathrm{~L}_{2}, \mathrm{~T}_{2}$ are units of mass, length and time in given two systems,
$\therefore \mathrm{M}_{1} =1 \mathrm{~kg}, \mathrm{~L}_{1}=1 \mathrm{~m}, \mathrm{~T}_{1}=1 \mathrm{~s}$
$\mathrm{M}_{2} =\alpha \mathrm{kg}, \mathrm{L}_{2}=\beta \mathrm{m}, \mathrm{T}_{2}=\gamma \mathrm{s}$
The magnitude of a physical quantity remains the same, whatever be the system of units of its measurement i.e.,
$n_{1} u_{1} =n_{2} u_{2}$
$n_{2}=n_{1} \frac{u_{1}}{u_{2}}=n_{1} \frac{\left[\mathrm{M}_{1} \mathrm{~L}_{1}^{2} \mathrm{~T}_{1}^{-2}\right]}{\left[\mathrm{M}_{2} \mathrm{~L}_{2}^{2} \mathrm{~T}_{2}^{-2}\right]}=5\left[\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}\right] \times\left[\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}\right]^{2} \times\left[\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right]^{-2}$
$=5\left[\frac{1}{\alpha}\right] \times\left[\frac{1}{\beta}\right]^{2} \times\left[\frac{1}{\gamma}\right]^{-2}$
$=5\times \frac{1}{\alpha} \times \frac{1}{\beta^{2}} \times \frac{1}{\gamma^{-2}}$
$n_{2} =\frac{5 \gamma^{2}}{\alpha \beta^{2}}$
Thus, new unit of energy will be $\frac{\gamma^{2}}{\alpha \beta^{2}}$

Similar Questions

A physical quantity $\vec{S}$ is defined as $\vec{S}=(\vec{E} \times \vec{B}) / \mu_0$, where $\vec{E}$ is electric field, $\vec{B}$ is magnetic field and $\mu_0$ is the permeability of free space. The dimensions of $\vec{S}$ are the same as the dimensions of which of the following quantity (ies)?

$(A)$ $\frac{\text { Energy }}{\text { charge } \times \text { current }}$

$(B)$ $\frac{\text { Force }}{\text { Length } \times \text { Time }}$

$(C)$ $\frac{\text { Energy }}{\text { Volume }}$

$(D)$ $\frac{\text { Power }}{\text { Area }}$

  • [IIT 2021]

If speed $V,$ area $A$ and force $F$ are chosen as fundamental units, then the dimension of Young's modulus will be :

  • [JEE MAIN 2020]

A calorie is a unit of heat or energy and it equals about $4.2\; J$ where $1 \;J =1\; kg \,m ^{2} \,s ^{-2}$ Suppose we employ a system of units in which the unit of mass equals $\alpha\; kg$, the unit of length equals $\beta\; m$, the unit of time is $\gamma$ $s$. Show that a calorie has a magnitude $4.2 \;\alpha^{-1} \beta^{-2} \gamma^{2}$ in terms of the new units.

The dimension of $\frac{\mathrm{B}^{2}}{2 \mu_{0}}$, where $\mathrm{B}$ is magnetic field and $\mu_{0}$ is the magnetic permeability of vacuum, is

  • [JEE MAIN 2020]

If energy $(E),$ velocity $(V)$ and time $(T)$ are chosen as the fundamental quantities, the dimensional formula of surface tension will be

  • [AIPMT 2015]