यंग के प्रत्यास्थता गुणांक (Young's modulus of elasticity) $Y$ को तीन व्युत्पन्न राशियों (derived quantities) नामतः गुरुत्वीय नियतांक $G$, प्लांक (Planck) नियतांक $h$ तथा प्रकाश की चाल $c$ के द्वारा $Y=c^\alpha h^\beta G^r$ से निरूपित किया जाता है। निम्न में से कौन सा विकल्प सही है?
$\alpha=7, \beta=-1, \gamma=-2$
$\alpha=-7, \beta=-1, \gamma=-2$
$\alpha=7, \beta=-1, \gamma=2$
$\alpha=-7, \beta=1, \gamma=-2$
निम्नलिखित में से कौन से समीकरण विमीय रूप से सत्य हैं ?
जहाँ $t =$ समय, $h =$ ऊँचाई, $s =$ पष्ठ तनाव, $\theta=$ कोण, $\rho=$ घनत्व, $a , r =$ त्रिज्या, $g =$ गुरूत्वीय त्वरण, $v =$ आयतन, $p =$ दाब, $W =$ किया गया कार्य, $\Gamma=$ बल आधूर्ण, $\varepsilon=$ विद्युत शीलता, $E =$ विद्युत क्षेत्र, $J =$ धारा घनत्व, $L =$ लंबाई।
एक द्रव्यमान $m$ स्प्रिंग से लटका है जिसका स्प्रिंग नियतांक $K$ है। इस द्रव्यमान की आवृत्ति $f$ निम्न सूत्र द्वारा दर्शायी जा रही है $f = C.{m^x}.{K^y}$ यहाँ पर $C$ एक विमाहीन राशि है। $x$ और $y$ के मान होंगें
एक स्तम्भ, जिसमें $\eta $ श्यानता गुणांक का श्यान द्रव भरा है, में से होकर एक स्टील की छोटी गेंद जिसकी त्रिज्या $r$ है, को गुरुत्वीय त्वरण के अधीन गिराया जाता है। कुछ समय पश्चात गेंद एक नियत मान ${v_T}$ जिसे सीमान्त मान कहते है, को प्राप्त कर लेती है। सीमान्त वेग ${\rm{(i)}}$गेंद के द्रव्यमान $m$ पर ${\rm{(ii)}}$ $\eta $ पर ${\rm{(iii)}}$ $r$ पर ${\rm{(iv)}}$ और गुरुत्वीय त्वरण $g$ पर निर्भर करता है। निम्न में से कौनसा सम्बन्ध विमीय रुप से सही है
यदि आवृत्ति, घनत्व $(\rho )$ लंबाई $(a)$ तथा पृष्ठ-तनाव $(T)$ का फलन हो तो इसका मान होगा