एक पासे को एक बार उछाला जाता है। घटना 'पासे पर प्राप्त संख्या $3$ का अपवर्त्य है', को $E$ से और ' पासे पर प्राप्त संख्या सम है', को $F$ से निरूपित किया जाए तो बताएँ क्या घटनाएँ $E$ और $F$ स्वतंत्र हैं?
We know that the sample space is $S=\{1,2,3,4,5,6\}$
Now $ \mathrm{E}=\{3,6\}, \mathrm{F}=\{2,4,6\}$ and $\mathrm{E} \cap \mathrm{F}=\{6\}$
Then $P(E)=\frac{2}{6}=\frac{1}{3}, P(F)=\frac{3}{6}=\frac{1}{2}$ and $P(E \cap F)=\frac{1}{6}$
Clearly $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) . \mathrm{P}(\mathrm{F})$
Hence $E $ and $F$ are independent events.
एक संस्था के कर्मचारियों में से $5$ कर्मचारियों का चयन प्रबंध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्योरा निम्नलिखित है
क्रम. | नाम | लिंग | आयु ( वर्षो में ) |
$1.$ | हरीश | $M$ | $30$ |
$2.$ | रोहन | $M$ | $33$ |
$3.$ | शीतल | $F$ | $46$ |
$4.$ | ऐलिस | $F$ | $28$ |
$5.$ | सलीम | $M$ | $41$ |
इस समूह से प्रवक्ता पद के लिए यादृच्छ्या एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या $35$ वर्ष से अधिक आयु का होने की क्या प्रायिकता है ?
दो गेंद एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में $10$ काली और $8$ लाल गेदें हैं तो प्रायिकता ज्ञात कीजिए एक काली तथा दूसरी लाल हो।
माना $A$ तथा $B$ दो घटनायें इस प्रकार हैं कि दोनों में से मात्र एक के होने की प्रायिकता $\frac{2}{5}$ है तथा $A$ या $B$ के होने की प्रायिकता $\frac{1}{2}$ है, तो दोनों के एक साथ होने की प्रायिकता है :-
एक पाठशाला की कक्षा $XI$ के $40 \%$ विद्यार्थी गणित पढते हैं और $30 \%$ जीव विज्ञान पढते हैं। कक्षा के $10 \%$ विद्यार्थी गणित और जीव विज्ञान दोनों पढते हैं। यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है , तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।
यदि $P\,(A) = \frac{1}{4},\,\,P\,(B) = \frac{5}{8}$ तथा $P\,(A \cup B) = \frac{3}{4},$ तो $P\,(A \cap B) = $