माना $(1+\mathrm{x})^{\mathrm{n}}$ के प्रसार में चार क्रमागत पदों के गुणांक $2-p, p, 2-\alpha, \alpha$ हैं। तो $p^2-\alpha^2+6 \alpha+2 p$ का मान बराबर है
$4$
$10$
$8$
$6$
यदि सभी $x \in R$ के लिए $1+x^{4}+x^{5}=\sum_{ i =0}^{5} a _{ i }(1+x)^{ i }$ है, तो $a _{2}$ है
यदि $\left(\frac{\mathrm{x}^{\frac{5}{2}}}{2}-\frac{4}{\mathrm{x}^{\ell}}\right)^9$ के द्विपद प्रसार में अचर पद $-84$ है तथा $\mathrm{x}^{-3 \ell}$ का गुणांक $2^\alpha \beta$ है, जहाँ $\beta<0$ एक विषम संख्या है, तो $|\alpha \ell-\beta|$ बराबर है______________.
यदि $\left(t^2 x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{15}, x \geq 0$, के प्रसार में $t$, से स्वतंत्र पद का अधिकतम मान $K$ है, तो $8 K$ बराबर है $...........$
माना कि $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$, और $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$ हैं। तब निम्नलिखित कथनों में से कौन सा (से) सत्य है (हैं)?
$(A)$ $Z \cup T_1 \cup T_2 \subset S$
$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, जहां $\phi$ रिक्त समुच्चय (empty set) को दर्शाता है।
$(C)$ $T_2 \cap(2024, \infty) \neq \phi$
$(D)$ किन्हीं दिये गए $a, b \in Z$ के लिए, $\cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ यदि और केवल यदि (if and only if) $b=0$, जहां $i=\sqrt{-1}$ है।
यदि $p$ तथा $q$ धनात्मक पूर्णांक हों, तो${(1 + x)^{p + q}}$ के विस्तार में ${x^p}$ तथा ${x^q}$ के गुणांक होंगे