7.Binomial Theorem
hard

$x$ के उन वास्तविक मानों जिनके लिये $\left(\frac{x^{3}}{3}+\frac{3}{x}\right)^{8}$ के द्विपद प्रसार का मध्य पद $5670$ है, का योग है 

A

$0$

B

$6$

C

$4$

D

$8$

(JEE MAIN-2019)

Solution

$5^{\text {th }}$ term will be the middle term.

$t_{4+1}=^{8} C_{4}\left(\frac{x^{3}}{3}\right)^{4}\left(\frac{3}{x}\right)^{4}=5670$

$=^{8} \mathrm{C}_{4} \cdot \mathrm{x}^{8}=5670$

$=\frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2} \mathrm{x}^{8}=5670$

$=x^{8}=\frac{567}{7}=81$

$=x^{8}-81=0$

$\Rightarrow$ Real value of $x=\pm \sqrt{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.