यदि ${(1 + x)^n}$ के विस्तार में द्वितीय, तृतीय तथा चतुर्थ पदों के गुणांक समान्तर श्रेणी $(A.P.)$ में हों, तब $n$ बराबर है
$7$
$2$
$6$
इनमें से कोई नहीं
$\left(1-x^2+3 x^3\right)\left(\frac{5}{2} x^3-\frac{1}{5 x^2}\right)^{11}, x \neq 0$ के प्रसार में $x$ से स्वतंत्र पद है
माना $\left(\sqrt{\mathrm{x}}-\frac{6}{\mathrm{x}^{\frac{3}{2}}}\right)^{\mathrm{n}}, \mathrm{n} \leq 15$ के द्विपद प्रसार में अचर पद $\alpha$ है। यदि इस प्रसार में शेष पदों के गुणांकों का योग $649$ है तथा $\mathrm{x}^{-\mathrm{n}}$ का गुणांक $\lambda \alpha$ है, तो $\lambda$ बराबर है_________
$(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$ का मान ज्ञात कीजिए
${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ के प्रसार में $\frac{1}{x}$ का गुणांक है
${\left( {2{x^2} - \frac{1}{x}} \right)^{12}}$ के प्रसार में $x$ से स्वतंत्र पद होगा