સદિશોના સરવાળા માટે ત્રિકોણની રીત (શીર્ષથી પુચ્છ રીત) સમજાવો.
આકૃતિમાં દર્શાવેલા બે સદિશો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ નો સદિશ સરવાળો ત્રિકોણની રીતે કરવો છે.
આ સદિશોની લંબાઈ સદિશોના માનના સમપ્રમાણમાં છે.
આકૃતિમાં દર્શાવ્યા પ્રમાણે કોઈ નિશ્ચિત બિંદુ $O$ પસંદ કરો.
હવે $\overrightarrow{ A }$ ને એવી રીતે દર્શાવો કે જેથી તેની લંબાઈ, દિશા ન બદલાય અને તેનું પુચ્છ $O$ પર આવે.
$\overrightarrow{ B }$ ને એવી રીતે દર્શાવો કે જેથી તેની લંબાઈ, દિશા ન બદલાય અને તેનું પુચ્છ $\vec{\textrm{A}}$ ના શીર્ષ પર આવે.
$\vec{A}$ ના પુચ્છ $O$ અને $\vec{B}$ ના શીર્ષને જોડતો સદિશ $\overrightarrow{O Q}$ દોરો કે $\vec{A}$ અને $\vec{B}$ નો સદિશ સરવાળો છે.
$\overrightarrow{ OQ }=\overrightarrow{ R }=\overrightarrow{ A }+\overrightarrow{ B }$
આ પદ્ધતિમાં એક સદિશના શીર્ષ પર બીજા સદિશનું પુચ્છ ગોઠવાતું હોવાથી આ રીતને શીર્ષથી પુચ્છની રીત પણ કહે છે. સદિશોના સરવાળાની આ રીતમાં બે સદિશો અને તેમનો પરિણામી સદિશ દ્વારા ત્રિકોણની ત્રણ બાજુઓની રચના થતી હોવાથી તેને સદિશ સરવાળની ત્રિકોણની રીત પણ કહે છે.
સદિશ સરવાળાના બે ગુણધર્મો નીચે મુજબ છે :
$(1)$ સદિશોનો સરવાળો સમક્રમી છે.
$(2)$ સદિશોનો સરવાળો જૂથના નિયમને અનુસરે છે.
સદિશોના સરવાળા માટેની બે રીતોના નામ આપો. તથા સદિશોના સરવાળા માટે સમાંતરબાજુ ચતુષ્કોણનો નિયમ લખો.
લિસ્ટ $- I$ ને લિસ્ટ $- II$ સાથે જોડો
નીચેના વિકલ્પોમાંથી સાચો જવાબ પસંદ કરો
સદિશોની બાદબાકી સમજાવો.
એકબીજા સાથે $\theta$ કોણ બનાવતા બે એકમ સદિશો $\hat{A}$ અને $\hat{B}$ માટે નીચેનામાંથી કયો સંબંધ સાચો છે $?$