$A$ અને $\frac{A}{2}$ નાં મૂલ્યો ધરાવતા બે બળો એકબીજાને લંબ છે. તેનું પરિણામીનું મૂલ્ય ...... છે.
$\frac{\sqrt{5}\,A }{4}$
$\frac{5\,A }{2}$
$\frac{\sqrt{5}\,A ^2}{2}$
$\frac{\sqrt{5}\,A }{2}$
સદિશ $\overrightarrow a $ ને $d\theta $ખૂણે ફેરવતાં $|\Delta \overrightarrow a |$ અને $\Delta a$ મેળવો.
$\vec A$ અને $\vec B$ નો પરિણામી $\vec A$ સાથે $\alpha $ ખૂણો બનાવે છે. અને $\vec B$ સાથે $\beta $ ખૂણો બનાવે તો .....
બે સમાન મૂલ્ય વાળા બળોના પરિણામનો વર્ગ એ તેમના ત્રણ ગણા ગુણાકારના મૂલ્યને સમાન હોય તો તેમના વચ્ચેનો ખૂણો ........ $^o$ હશે .
સદિશ $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ અક્ષની સાપેક્ષે અનુક્રમે $20^°$ અને $110^°$ ખૂણો બનાવે છે. આ સદિશોનું મૂલ્ય અનુક્રમે $5\, m$ અને $12 \,m$ છે. આ સદિશોને પરિણામી સદિશનું મૂલ્ય.......$m$
જો $ \overrightarrow A ,\,\overrightarrow B $ and $ \overrightarrow C $ ના મૂલ્ય $12, 5$ અને $13$ હોય અને $ \overrightarrow A + \overrightarrow B = \overrightarrow C $ , તો સદિશ $ \overrightarrow A $ અને $ \overrightarrow B $ વચ્ચેનો ખૂણો કેટલો હશે?