$(a)$ दो आवेशों $7 \mu \,C$ तथा $-2 \mu\, C$ जो क्रमशः $(-9 \,cm , 0,0)$ तथा $(9 \,cm , 0,0)$ पर स्थित हैं, के ऐसे निकाय, जिस पर कोई बाह्य क्षेत्र आरोपित नहीं है, की स्थिरवैध्यूत स्थितिज की ऊर्जा ज्ञात कीजिए।
$(b)$ दोनों आवेशों को एक-दूसरे से अनंत दूरी तक पृथक करने के लिए कितने कार्य की आवश्यकता होगी?
$(c)$ माना कि अब इस आवेश निकाय को किसी बाह्य विध्युत क्षेत्र $E=A\left(1 / r^{2}\right) \, ;$ $A=9 \times 10^{5} C m ^{-2}$ में रखा गया है। इस विन्यास की स्थिरवैध्यूत ऊर्जा का परिकलन करें
$(a)$ $U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}=9 \times 10^{9} \times \frac{7 \times(-2) \times 10^{-12}}{0.18}$$=-0.7\, J$
$(b)$ $W=U_{2}-U_{1}=0-U=0-(-0.7)$$=0.7 \,J$
$(c)$ The mutual interaction energy of the two charges remains unchanged. In addition, there is the energy of interaction of the two charges with the external electric field. We find,
$q_{1} V\left( r _{1}\right)+q_{2} V\left( r _{2}\right)$$=A \frac{7\, \mu C }{0.09\, m }+A \frac{-2\, \mu C }{0.09 \,m }$
and the net electrostatic energy is
$q_{1} V\left( r _{1}\right)+q_{2} V\left( r _{2}\right)+\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}}$$=A \frac{7\, \mu C }{0.09 \,m }+A \frac{-2 \,\mu C }{0.09 \,m }-0.7 \,J$
$=70-20-0.7=49.3 \,J$
मूल बिंदु पर एक $8 \,mC$ का आवेश अवस्थित है। $-2 \times 10^{-9}\, C$ के एक छोटे से आवेश को बिंदु $P (0,0,3\, cm )$ से, बिंदु $R (0,6\, cm , 9\, cm )$ से होकर, बिंदु $Q (0,4 \,cm , 0)$ तक ले जाने में किया गया कार्य परिकलित कीजिए
निम्न में से कौनसा सही है
$100\, V$ विभवान्तर द्वारा विरामावस्था से त्वरित एक इलेक्ट्रॉन तथा $\alpha $-कण के संवेगों का अनुपात है
इस प्रश्न में प्रकथन $1$ एवं प्रकथन $2$ दिये हुए हैं। प्रकथनों के पश्चात् दिये गये चार विकल्पों में से, उस विकल्प को चुनिए जोकि दोनों प्रकथनों का सर्वोत्तम वर्णन करता है।
त्रिज्या $R$ के एक विध्युत रोधी ठोस गोले पर एकसमान धनात्मक आवेश घनत्व $\rho$ हैं। इस एकसमान आवेश वितरण कें कारण विध्युत विभव का मान गोले के केन्द्र पर, गोले के पृष्ठ पर और गोले से बाहर एक बिन्दु पर परिमित है। अनन्त पर विध्युत विभव का मान शून्य है
प्रकथन $1 :$ जव एक आवेश $q$ को गोले के केन्द्र से पृष्ठ तक ले जाया जाता है, तब स्थितिज ऊर्जा में $\frac{q \rho}{38_{0}}$ से परिवर्तन होता है।
प्रकथन $2 :$ गोले के केन्द्र से दूरी $r( r < R)$ पर विध्युत क्षेत्र $\frac{\rho r}{3 \varepsilon_{0}}$ है।
यदि $H _{2}$ अणु के दो में से एक इलेक्ट्रॉन को हटा दिया जाए तो हमें हाइड्रोजन आणविक आयन $\left( H _{2}^{+}\right)$ प्राप्त होगा। $\left( H _{2}^{+}\right)$ की निम्नतम अवस्था ( ground state) में दो प्रोटॉन के बीच दूरी लगभग $1.5\, \AA$ है और इलेक्ट्रॉन प्रत्येक प्रोटॉन से लगभग $1\, \AA$ की दूरी पर है। निकाय की स्थितिज ऊर्जा ज्ञात कीजिए। स्थितिज ऊर्जा की शून्य स्थिति के चयन का उल्लेख कीजिए।