બે સમાન મૂલ્યના સદિશોના પરિણામી સદિશનું મૂલ્ય કોઈ એક સદિશના મૂલ્ય જેટલું થાય છે, તો બે સદિશ વચ્ચેનો ખૂણો જણાવો.
સમાન મૂલ્યના બે સદિશો વચ્ચેનો ખૂઘો $120^{\circ}$ હોય, તો પરિક્મામી સદિશનું મૂલ્ય કોઈ એક સદિશના મૂલ્ય જેટલું થાય.
$R =\sqrt{ A ^{2}+ B ^{2}+2 AB \cos \theta}$
$=\sqrt{ A ^{2}+ A ^{2}+2 A ^{2} \cos 120^{\circ}}$
$={ A ^{2}+ A ^{2}-\frac{2 A ^{2}}{2}}=\sqrt{ A ^{2}}= A$
$\vec P $ અને $\vec Q $ બે સદીશોનું પરિણામી $\vec R $ છે. જો $\vec Q $ બમણું હોય તો પરિણામી સદિશ એ $\vec P $ ને લંબ હોય છે તો $\vec R $ નું મૂલ્ય કેટલું થાય ?
બે સદિશોના સરવાળા માટે સમાંતરબાજુ ચતુષ્કોણની રીત સમજાવો. સમજાવો કે આ રીત ત્રિકોણની રીતને સમતુલ્ય છે.
$\vec A$ અને $\vec B $ નો પરિણામી સદીશ $\vec R_1$ છે . વિરુદ્ધ સદીશ $\vec B $ પર પરિણામી સદીશ $\vec R_2 $ બને તો ${\rm{R}}_{\rm{1}}^{\rm{2}}\,\, + \,\,{\rm{R}}_{\rm{2}}^{\rm{2}}$ નું મૂલ્ય શું હશે ?
$\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$ છે, તો તેમનો સરવાળો બૈજિક રીતે કરો.
ત્રણ છોકરીઓ $200\, m$ ત્રિજ્યાવાળી વર્તુળાકાર રિંગમાં બરફની સપાટી પર સ્કેટિંગ કરી રહી છે તે સપાટીની કિનારી પર બિંદુ $P$ થી સ્કેટિંગ શરૂ કરે છે તથા $P$ ના વ્યાસાંત બિંદુ $Q$ પર જુદા જુદા પથો પર થઈનેઆકૃતિ માં દર્શાવ્યા પ્રમાણે પહોંચે છે. દરેક છોકરીના સ્થાનાંતર સદિશનું માન કેટલું છે ? કઈ છોકરી માટે તેનું માન તેની મૂળ સ્કેટની પથલંબાઈ જેટલું થશે?