બે સમાન મૂલ્યના સદિશોના પરિણામી સદિશનું મૂલ્ય કોઈ એક સદિશના મૂલ્ય જેટલું થાય છે, તો બે સદિશ વચ્ચેનો ખૂણો જણાવો.
સમાન મૂલ્યના બે સદિશો વચ્ચેનો ખૂઘો $120^{\circ}$ હોય, તો પરિક્મામી સદિશનું મૂલ્ય કોઈ એક સદિશના મૂલ્ય જેટલું થાય.
$R =\sqrt{ A ^{2}+ B ^{2}+2 AB \cos \theta}$
$=\sqrt{ A ^{2}+ A ^{2}+2 A ^{2} \cos 120^{\circ}}$
$={ A ^{2}+ A ^{2}-\frac{2 A ^{2}}{2}}=\sqrt{ A ^{2}}= A$
બે સદિશ $\vec A$ અને $\vec B$ સમાન માન ધરાવે છે. $(\vec A + \vec B)$ નું માન એ $(\vec A - \vec B)$ ના માન કરતા $n$ ગણું છે. $\vec A$ અને $\vec B$ વચ્ચેનો ખૂણો કેટલો હશે?
બે સદિશોના સરવાળા માટે સમાંતરબાજુ ચતુષ્કોણની રીત સમજાવો. સમજાવો કે આ રીત ત્રિકોણની રીતને સમતુલ્ય છે.
$(\overrightarrow{{A}})$ અને $(\overrightarrow{{A}}-\overrightarrow{{B}})$ સદિશ વચ્ચેનો ખૂણો કેટલો થાય?
સમાન મૂલ્યો ધરાવતાં ત્રણ સદિશો સમતોલનમાં હોય,તો તેમની વચ્ચેનો ખૂણો કેટલો હશે?
$\overrightarrow A = 2\hat i + \hat j,\,B = 3\hat j - \hat k$અને $\overrightarrow C = 6\hat i - 2\hat k$ હોય તો , $\overrightarrow A - 2\overrightarrow B + 3\overrightarrow C $ નુ મુલ્ય