સમાન મૂલ્ય $R$ ધરાવતા બે સદીશો $\vec{A}$ અને $\vec{B}$ વચ્ચેનો ખૂણો $\theta$ છે તો
બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ $\mathop R\limits^ \to $ નું મૂલ્ય મહત્તમ મળે.
નીચે દર્શાવેલ અસમતાઓ ભૌમિતિક કે અન્ય કોઈ રીતે સાબિત કરો :
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
તેમાં સમતાનું ચિહ્ન ક્યારે લાગુ પડે છે ?
શું $\mathop A\limits^ \to + \mathop B\limits^ \to \,$ $=$ $\mathop A\limits^ \to - \mathop B\limits^ \to \,$ શક્ય છે ?