જો વર્તુળની ત્રિજયા $R$ હોય તો સદિશો $ \overrightarrow {OA} ,\,\overrightarrow {OB} $ અને $ \overrightarrow {OC} $ નો પરિણામી સદિશ કેટલો થશે?
$2R$
$ R(1 + \sqrt 2 ) $
$ R\sqrt 2 $
$ R(\sqrt 2 - 1) $
$5\, N$ અને $10\, N$ નું પરિણામી નીચેનામાથી કયું શકય નથી ? ........ $N$
$\overrightarrow{O P}, \overrightarrow{O Q}, \overrightarrow{O R}, \overrightarrow{O S}$ અને $\overrightarrow{{OT}}$ નું પરિણામી બળ લગભગ $\ldots \ldots {N}$ જેટલું થાય.
[$\sqrt{3}=1.7, \sqrt{2}=1.4$ , $\hat{{i}}$ અને $\hat{{j}}$ એ ${x}, {y}$ અક્ષની દિશાના એકમ સદીશ છે.$]$
$\mathop A\limits^ \to + \mathop B\limits^ \to \,$ અને $\mathop A\limits^ \to - \mathop B\limits^ \to \,$ નું મૂલ્ય ક્યારે સમાન થાય ?
$\overrightarrow A + \overrightarrow B + \overrightarrow C= 0$ આપેલ છે. ત્રણ સદિશ પૈકી બે સદિશોનું મૂલ્ય સમાન છે. અને ત્રીજા સદિશનું મૂલ્ય $\sqrt 2 $ ગણું કે જે બે સમાન મૂલ્ય સિવાયનું છે. તો સદિશો વચ્ચેના ખૂણાઓ શું હશે ?
જો $ |\,\vec A + \vec B\,|\, = \,|\,\vec A\,| + |\,\vec B\,| $ હોય, તો $ \vec A $ અને $ \vec B $ વચ્ચેનો ખૂણો ....... $^o$ હશે.