$x$ એકમ સમાન મૂલ્યના અને એકબીજાને $45^o$ ના ખૂણે રહેલા બે સદિશો નો પરિણામી સદિશ $\sqrt {\left( {2 + \sqrt 2 } \right)} $ એકમ હોય. તો $x$ નું મૂલ્ય શું થાય?
$\overrightarrow {\left| {P\,} \right|} > \,\overrightarrow {\left| {Q\,} \right|} $ છે. તો તેમના મહત્તમ પરિણામી સદિશ અને લઘુતમ પરિણામી સદિશ વચ્ચેનો ખૂણો કેટલો મળે ?
બે સદિશો $\overrightarrow A $ અને $\overrightarrow B $ નો પરિણામી સદિશ $\overrightarrow R$ છે, તો $\overrightarrow {\left| R \right|} \,...\,\overrightarrow {\left| A \right|} \, + \,\overrightarrow {\left| B \right|} $
બે સદિશો $\overrightarrow A $ અને $\overrightarrow B $ ના માન અનુક્રમે $4$ એકમ અને $3$ એકમ છે. જો આ અદિશો $(i)$ એકજ દિશામાં $(\theta = 0^o)$. $(ii)$ પરસ્પર વિરુદ્ધ દિશામાં $(\theta = 180^o)$ હોય, તો પરિણામી સદિશનું માન જણાવો.