If $A , B$ and $C$ are interior angles of a triangle $ABC ,$ then show that
$\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$
We know that for a triangle $ABC$
$\angle A+\angle B+\angle C=180^{\circ}$
$\angle B+\angle C=180^{\circ}-\angle A$
$\frac{\angle B+\angle C}{2}=90^{\circ}-\frac{\angle A}{2}$
$\sin \left(\frac{B+C}{2}\right)=\sin \left(90^{\circ}-\frac{A}{2}\right)$
$=\cos \left(\frac{ A }{2}\right)$
$\sin 2 A=2 \sin A$ is true when $A=$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$
$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=........$
If $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right),$ where $4 A$ is an acute angle, find the value of $A$. (in $^{\circ}$)
If $\sin A =\frac{3}{4},$ calculate $\cos A$ and $\tan A$.