If $A , B$ and $C$ are interior angles of a triangle $ABC ,$ then show that

$\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that for a triangle $ABC$

$\angle A+\angle B+\angle C=180^{\circ}$

$\angle B+\angle C=180^{\circ}-\angle A$

$\frac{\angle B+\angle C}{2}=90^{\circ}-\frac{\angle A}{2}$

$\sin \left(\frac{B+C}{2}\right)=\sin \left(90^{\circ}-\frac{A}{2}\right)$

$=\cos \left(\frac{ A }{2}\right)$

Similar Questions

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$

Evaluate:

$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$

Evaluate the following:

$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$

Evaluate:

$\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$

In triangle $ABC ,$ right -angled at $B ,$ if $\tan A =\frac{1}{\sqrt{3}},$ find the value of:

$(i)$ $\sin A \cos C+\cos A \sin C$

$(ii)$ $\cos A \cos C-\sin A \sin C$