State whether the following are true or false. Justify your answer.

$\sin (A+B)=\sin A+\sin B$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sin (A+B)=\sin A+\sin B$

Let $A=30^{\circ}$ and $B=60^{\circ}$

$\sin (A+B)=\sin \left(30^{\circ}+60^{\circ}\right)$

$=\sin 90^{\circ}$

$=1$

$\sin A+\sin B=\sin 30^{\circ}+\sin 60^{\circ}$

$=\frac{1}{2}+\frac{\sqrt{3}}{2}=\frac{1+\sqrt{3}}{2}$

Clearly, $\sin (A+B) \neq \sin A+\sin B$

Hence, the given statement is false.

Similar Questions

Consider $\triangle ACB$, right-angled at $C$, in which $AB =29$ units, $BC =21$ units and $\angle ABC =\theta$ (see $Fig.$). Determine the values of

$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$

$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$

In a right triangle $A B C$, right-angled at $B$. if $\tan A =1,$ then verify that $2 \sin A \cos A=1$

Evaluate:

$\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$

Evaluate the following:

$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

Prove that $\sec A(1-\sin A)(\sec A+\tan A)=1$