State whether the following are true or false. Justify your answer.

$\sin (A+B)=\sin A+\sin B$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sin (A+B)=\sin A+\sin B$

Let $A=30^{\circ}$ and $B=60^{\circ}$

$\sin (A+B)=\sin \left(30^{\circ}+60^{\circ}\right)$

$=\sin 90^{\circ}$

$=1$

$\sin A+\sin B=\sin 30^{\circ}+\sin 60^{\circ}$

$=\frac{1}{2}+\frac{\sqrt{3}}{2}=\frac{1+\sqrt{3}}{2}$

Clearly, $\sin (A+B) \neq \sin A+\sin B$

Hence, the given statement is false.

Similar Questions

If $\angle B$ and $\angle Q$ are acute angles such that $\sin B =\sin Q$, then prove that $\angle B =\angle Q$.

$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=........$

Prove that

$\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta},$ using the identity

$\sec ^{2} \theta=1+\tan ^{2} \theta$

Evaluate the following:

$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$