$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=..........$

  • A

    $0$

  • B

    $2$

  • C

    $1$

  • D

    $-1$

Similar Questions

If $\angle B$ and $\angle Q$ are acute angles such that $\sin B =\sin Q$, then prove that $\angle B =\angle Q$.

Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$

Evaluate:

$\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$

In $\triangle ABC ,$ right-angled at $B , AB =24 \,cm , BC =7 \,cm .$ Determine:

$(i)$ $\sin A, \cos A$

$(ii)$ $\sin C, \cos C$

Evaluate the following:

$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$