Write all the other trigonometric ratios of $\angle A$ in terms of $\sec$ $A$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that,

$\cos A=\frac{1}{\sec A}$

Also, $\sin ^{2} A+\cos ^{2} A=1$

$\sin ^{2} A=1-\cos ^{2} A$

$\sin A=\sqrt{1-\left(\frac{1}{\sec A}\right)^{2}}$

$=\sqrt{\frac{\sec ^{2} A-1}{\sec ^{2} A}}=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}$

$\tan ^{2} A+1=\sec ^{2} A$

$\tan ^{2} A=\sec ^{2} A-1$

$\tan A =\sqrt{\sec ^{2} A -1}$

$\cot A =\frac{\cos A }{\sin A } =\frac{\frac{1}{\sec A}}{\frac{\sqrt{\sec ^{2} A-1}}{\sec A}}$

$=\frac{1}{\sqrt{\sec ^{2} A-1}}$

$\operatorname{cosec} A =\frac{1}{\sin A }=\frac{\sec A }{\sqrt{\sec ^{2} A -1}}$

Similar Questions

Given $\tan A=\frac{4}{3},$ find the other trigonometric ratios of the $\angle A$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$

If $\sin A =\frac{3}{4},$ calculate $\cos A$ and $\tan A$.

Evaluate:

$\cos 48^{\circ}-\sin 42^{\circ}$