If $\sin A =\frac{3}{4},$ calculate $\cos A$ and $\tan A$.
Let $\triangle ABC$ be a right-angled triangle, right-angled at point $B$.
Given that,
$\sin A=\frac{3}{4}$
$\frac{B C}{A C}=\frac{3}{4}$
Let $BC$ be $3 k$. Therefore, $AC$ will be $4 k,$ where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle ABC$, we obtain
$AC ^{2}= AB ^{2}+ BC ^{2}$
$(4 k)^{2}= AB ^{2}+(3 k)^{2}$
$16 k^{2}-9 k^{2}=A B^{2}$
$7 k^{2}=A B^{2}$
$A B=\sqrt{7} k$
$\cos A=\frac{\text { Side adjacent to } \angle A}{\text { Hypotenuse }}$
$=\frac{A B}{A C}=\frac{\sqrt{7 }k}{4 k}=\frac{\sqrt{7}}{4}$
$\tan A=\frac{\text { Side opposite to } \angle A}{\text { Side adjacent to } \angle A}$
$=\frac{B C}{A B}=\frac{3 k}{\sqrt{7} k}=\frac{3}{\sqrt{7}}$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$
Write all the other trigonometric ratios of $\angle A$ in terms of $\sec$ $A$.
If $\tan A =\cot B ,$ prove that $A + B =90^{\circ}$
If $\angle A$ and $\angle B$ are acute angles such that $\cos A =\cos B ,$ then show that $\angle A =\angle B$.
If $\tan 2 A=\cot \left(A-18^{\circ}\right),$ where $2 A$ is an acute angle, find the value of $A .$ (in $^{\circ}$)