If $\sin A =\frac{3}{4},$ calculate $\cos A$ and $\tan A$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $\triangle ABC$ be a right-angled triangle, right-angled at point $B$.

Given that,

$\sin A=\frac{3}{4}$

$\frac{B C}{A C}=\frac{3}{4}$

Let $BC$ be $3 k$. Therefore, $AC$ will be $4 k,$ where $k$ is a positive integer.

Applying Pythagoras theorem in $\triangle ABC$, we obtain

$AC ^{2}= AB ^{2}+ BC ^{2}$

$(4 k)^{2}= AB ^{2}+(3 k)^{2}$

$16 k^{2}-9 k^{2}=A B^{2}$

$7 k^{2}=A B^{2}$

$A B=\sqrt{7} k$

$\cos A=\frac{\text { Side adjacent to } \angle A}{\text { Hypotenuse }}$

$=\frac{A B}{A C}=\frac{\sqrt{7 }k}{4 k}=\frac{\sqrt{7}}{4}$

$\tan A=\frac{\text { Side opposite to } \angle A}{\text { Side adjacent to } \angle A}$

$=\frac{B C}{A B}=\frac{3 k}{\sqrt{7} k}=\frac{3}{\sqrt{7}}$

Similar Questions

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

Write all the other trigonometric ratios of $\angle A$ in terms of $\sec$ $A$.

If $\tan A =\cot B ,$ prove that $A + B =90^{\circ}$

If $\angle A$ and $\angle B$ are acute angles such that $\cos A =\cos B ,$ then show that $\angle A =\angle B$.

If $\tan 2 A=\cot \left(A-18^{\circ}\right),$ where $2 A$ is an acute angle, find the value of $A .$ (in $^{\circ}$)