$(\sec A+\tan A)(1-\sin A)=..........$
$\sec A$
$\sin A$
$\cos A$
$\operatorname{cosec} A$
If $\angle B$ and $\angle Q$ are acute angles such that $\sin B =\sin Q$, then prove that $\angle B =\angle Q$.
In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.
If $3 \cot A=4,$ check whether $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ or not.
Given $\sec \theta=\frac{13}{12},$ calculate all other trigonometric ratios.
Express the ratios $\cos A ,$ tan $A$ and $\sec A$ in terms of $\sin A .$