- Home
- Standard 10
- Mathematics
8. Introduction to Trigonometry
medium
If $\tan ( A + B )=\sqrt{3}$ and $\tan ( A - B )=\frac{1}{\sqrt{3}} ; 0^{\circ}< A + B \leq 90^{\circ} ; A > B ,$ find $A$ and $B$
Option A
Option B
Option C
Option D
Solution
$\tan (A+B)=\sqrt{3}$
$\Rightarrow \tan (A+B)=\tan 60$
$\Rightarrow A+B=60 \ldots(1)$
$\tan ( A – B )=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan (A-B)=\tan 30$
$\Rightarrow A-B=30 \ldots(2)$
On adding both equations, we obtain
$2 A =90$
$\Rightarrow A=45$
From equation $(1),$ we obtain
$45+B=60$
$B=15$
Therefore, $\angle A =45^{\circ}$ and $\angle B =15^{\circ}$
Standard 10
Mathematics