If $\tan ( A + B )=\sqrt{3}$ and $\tan ( A - B )=\frac{1}{\sqrt{3}} ; 0^{\circ}< A + B \leq 90^{\circ} ; A > B ,$ find $A$ and $B$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\tan (A+B)=\sqrt{3}$

$\Rightarrow \tan (A+B)=\tan 60$

$\Rightarrow A+B=60 \ldots(1)$

$\tan ( A - B )=\frac{1}{\sqrt{3}}$

$\Rightarrow \tan (A-B)=\tan 30$

$\Rightarrow A-B=30 \ldots(2)$

On adding both equations, we obtain

$2 A =90$

$\Rightarrow A=45$

From equation $(1),$ we obtain

$45+B=60$

$B=15$

Therefore, $\angle A =45^{\circ}$ and $\angle B =15^{\circ}$

Similar Questions

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$

Consider $\triangle ACB$, right-angled at $C$, in which $AB =29$ units, $BC =21$ units and $\angle ABC =\theta$ (see $Fig.$). Determine the values of

$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$

$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$

If $\sin 3 A =\cos \left( A -26^{\circ}\right),$ where $3 A$ is an acute angle, find the value of $A= . . . . ^{\circ}$.

Given $15 \cot A =8,$ find $\sin A$ and $\sec A .$

State whether the following are true or false. Justify your answer.

$\sin (A+B)=\sin A+\sin B$