In triangle $ABC ,$ right -angled at $B ,$ if $\tan A =\frac{1}{\sqrt{3}},$ find the value of:
$(i)$ $\sin A \cos C+\cos A \sin C$
$(ii)$ $\cos A \cos C-\sin A \sin C$
$\tan A =\frac{1}{\sqrt{3}}$
$\frac{ BC }{ AB }=\frac{1}{\sqrt{3}}$
If $B C$ is $k$, then $A B$ will be $\sqrt{3} k,$ where $k$ is a positive integer.
$\ln \triangle ABC ,$
$-A C^{2}=A B^{2}+B C^{2}$
$(\sqrt{3} k)^{2}+(k)^{2}$
$=3 k^{2}+k^{2}=4 k^{2}$
$AC =2 k$
$\sin A=\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }=\frac{k}{2 k}=\frac{1}{2}$
$\cos A=\frac{\text { Side adjacent to } \angle A }{\text { Hypotenuse }}=\frac{ AB }{ AC }=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$
$\sin C=\frac{\text { Side opposite to } \angle C }{\text { Hypotenuse }}=\frac{ AB }{ AC }=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$
$\cos C=\frac{\text { Side adjacent to } \angle C }{\text { Hypotenuse }}=\frac{ BC }{ AC }=\frac{k}{2 k}=\frac{1}{2}$
$(i)$ $\sin A \cos C+\cos A \sin C$
$=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\frac{1}{4}+\frac{3}{4}$
$=\frac{4}{4}=1$
$(ii)$ $\cos A \cos C-\sin A \sin C$
$=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}=0$
State whether the following are true or false. Justify your answer.
$(i)$ The value of tan $A$ is always less than $1 .$
$(ii)$ $\sec A=\frac{12}{5}$ for some value of angle $A$.
Given $\sec \theta=\frac{13}{12},$ calculate all other trigonometric ratios.
In $\triangle$ $OPQ$, right-angled at $P$, $OP =7\, cm$ and $OQ - PQ =1\, cm$ (see $Fig.$). Determine the values of $\sin Q$ and $\cos Q$.
$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$
State whether the following are true or false. Justify your answer.
$\sin \theta=\cos \theta$ for all values of $\theta$