- Home
- Standard 11
- Mathematics
Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D},$ then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is
If $\mathrm{A} \subseteq \mathrm{C},$ then $\mathrm{B} \subset \mathrm{A}$ or $\mathrm{D} \subset \mathrm{B}$
If $\mathrm{A} \ne \mathrm{C},$ then $\mathrm{A} \neq \mathrm{B}$ or $\mathrm{B} \ne \mathrm{D}$
If $\mathrm{A}\ne\mathrm{C},$ then $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D}$
If $\mathrm{A} \neq \mathrm{C},$ then $\mathrm{A} \neq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D}$
Solution
Contrapositive of $\mathrm{p} \rightarrow \mathrm{q}$ is $\sim \mathrm{q} \rightarrow \sim \mathrm{p}$
$(\mathrm{A} \subseteq \mathrm{B}) \Lambda(\mathrm{B} \subseteq \mathrm{D}) \longrightarrow(\mathrm{A} \subseteq \mathrm{C})$
Contrapositive is
$\sim(\mathrm{A} \subseteq \mathrm{C}) \longrightarrow \sim(\mathrm{A} \subseteq \mathrm{B}) \vee \sim(\mathrm{B} \subseteq \mathrm{D})$
$\mathrm{A} \neq \mathrm{C} \rightarrow(\mathrm{A} \neq \mathrm{B}) \vee(\mathrm{B} \neq \mathrm{D})$