- Home
- Standard 11
- Mathematics
જો ${ }^{n-1} C_r=\left(k^2-8\right){ }^n C_{r+1}$ તો અને તો જ
$2 \sqrt{2}<\mathrm{k} \leq 3$
$2 \sqrt{3}<\mathrm{k} \leq 3 \sqrt{2}$
$2 \sqrt{3}<\mathrm{k}<3 \sqrt{3}$
$2 \sqrt{2}<\mathrm{k}<2 \sqrt{3}$
Solution
$ { }^{n-1} C_r=(k^2-8){ }^n C_{T+1} $
$\underbrace{r+1 \geq 0, \quad r \geq 0}_{r \geq 0}$
$\frac{{ }^{n-1} C_{\mathrm{r}}}{{ }^n C_{\mathrm{r}+1}}=\mathrm{k}^2-8$
$\frac{\mathrm{r}+1}{\mathrm{n}}=\mathrm{k}^2-8$
$\Rightarrow \mathrm{k}^2-8>0$
$(\mathrm{k}-2 \sqrt{2})(\mathrm{k}+2 \sqrt{2})>0$
$\mathrm{k} \in(-\infty,-2 \sqrt{2}) \cup(2 \sqrt{2}, \infty)$ $……(I)$
$\therefore \mathrm{n} \geq \mathrm{r}+1, \frac{\mathrm{r}+1}{\mathrm{n}} \leq 1$
$ \Rightarrow \mathrm{k}^2-8 \leq 1 $
$\mathrm{k}^2-9 \leq 0$
$ -3 \leq \mathrm{k} \leq 3 $ $……(II)$
From equation $(I)$ and $(II)$ we get
$\mathrm{k} \in[-3,-2 \sqrt{2}) \cup(2 \sqrt{2}, 3]$