If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then
$x = y = z = a/3$
$x + y + z = a/3$
$x + y + z = 0$
None of these
${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $
If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),} $ then
The square root of $\frac{(0.75)^3}{1-(0.75)}+\left[0.75+(0.75)^2+1\right]$ is
The rationalising factor of ${a^{1/3}} + {a^{ - 1/3}}$ is
If ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$then $x =$