Basic of Logarithms
medium

If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then

A

$x = y = z = a/3$

B

$x + y + z = a/3$

C

$x + y + z = 0$

D

None of these

Solution

(a) ${a^x}.{a^y}.{a^z} = {(x + y + z)^{y + z + x}}$

$ \Rightarrow \,\,{a^{x + y + z}} = {(x + y + z)^{x + y + z}}$$ \Rightarrow $ $x + y + z = a$

Now, ${a^x} = {(x + y + z)^y} = {a^y}$$ \Rightarrow $ $x = y$, similarly $y = z$

$\therefore x = y = z = {a \over 3}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.