The number of integers $q , 1 \leq q \leq 2021$, such that $\sqrt{ q }$ is rational, and $\frac{1}{ q }$ has a terminating decimal expansion, is
$1$
$11$
$22$
$44$
The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $
$\sqrt {(3 + \sqrt 5 )} $ is equal to
If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are
If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),} $ then