The number of integers $q , 1 \leq q \leq 2021$, such that $\sqrt{ q }$ is rational, and $\frac{1}{ q }$ has a terminating decimal expansion, is

  • [KVPY 2021]
  • A

    $1$

  • B

    $11$

  • C

    $22$

  • D

    $44$

Similar Questions

The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $

$\sqrt {(3 + \sqrt 5 )} $ is equal to

If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $

Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are

If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),}  $ then