If $\sum\limits_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum\limits_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$
Where $\alpha \in R$, then the value of $16 \alpha$ is equal to
$1411$
$1320$
$1615$
$1855$
Sum of odd terms is $A$ and sum of even terms is $B$ in the expansion ${(x + a)^n},$ then
If ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ and ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, then $\frac{{{t_n}}}{{{S_n}}}$ is equal to
The coefficent of $x^7$ in the expansion of ${\left( {1 - x - {x^2} + {x^3}} \right)^6}$ is
The sum of the coefficients in the expansion of ${(1 + x - 3{x^2})^{2163}}$ will be
If $(1 + x - 3x^2)^{2145} = a_0 + a_1x + a_2x^2 + .........$ then $a_0 - a_1 + a_2 - a_3 + ..... $ ends with