7.Binomial Theorem
hard

If $\sum\limits_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum\limits_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$

Where $\alpha \in R$, then the value of $16 \alpha$ is equal to

A

$1411$

B

$1320$

C

$1615$

D

$1855$

(JEE MAIN-2022)

Solution

$\sum\limits_{ R =1}^{31}{ }^{31} C _{ R } \cdot{ }^{31} C _{ R -1}$

$={ }^{31} C _{1} \cdot{ }^{31} C _{0}+{ }^{31} C _{2} \cdot{ }^{31} C _{1}+\ldots .+{ }^{31} C _{31} \cdot{ }^{31} C _{30}$

$={ }^{31} C _{0} \cdot{ }^{31} C _{30}+{ }^{31} C _{1} \cdot{ }^{31} C _{29}+\ldots .+{ }^{31} C _{30} \cdot{ }^{31} C _{0}$

$={ }^{62} C _{30} \cdot$

Similarly

$\sum\limits_{ R =1}^{30}\left({ }^{30} C _{ R } \cdot{ }^{30} C _{ R -1}\right)={ }^{60} C _{29}$

${ }^{62} C _{30}-{ }^{60} C _{29}=\frac{62 !}{30 ! 32 !}-\frac{60 !}{29 ! 31 !}$

$=\frac{60 !}{29 ! 31 !}\left\{\frac{62 \cdot 61}{30 \cdot 32}-1\right\}$

$=\frac{60 !}{30 ! 31 !}\left(\frac{2822}{32}\right)$

$\therefore 16 \alpha=16 \times \frac{2822}{32}=1411$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.