If number of terms in the expansion of ${(x - 2y + 3z)^n}$ are $45$, then $n=$

  • A

    $7$

  • B

    $8$

  • C

    $9$

  • D

    None of these

Similar Questions

The coefficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{6}$ in powers of $x,$ is

  • [JEE MAIN 2020]

If ${(1 - x + {x^2})^n} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{2n}}{x^{2n}}$, then ${a_0} + {a_2} + {a_4} + .... + {a_{2n}} = $

If $\sum_{ r =1}^{30} \frac{ r ^2\left({ }^{30} C _{ r }\right)^2}{{ }^{30} C _{ r -1}}=\alpha \times 2^{29}$, then $\alpha$ is equal to

  • [JEE MAIN 2025]

If $(1 + x) (1 + x + x^2) (1 + x + x^2 + x^3) ...... (1 + x + x^2 + x^3 + ...... + x^n)$

$\equiv  a_0 + a_1x + a_2x^2 + a_3x^3 + ...... + a_mx^m$ then $\sum\limits_{r\, = \,0}^m {\,\,{a_r}}$ has the value equal to

Let ${s_1} = \mathop \sum \limits_{j = 1}^{10} j\left( {j - 1} \right)\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,$$\;{s_2} = \mathop \sum \limits_{j = 1}^{10} j\;\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;and,$${s_3} = \mathop \sum \limits_{j = 1}^{10} {j^2}\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,\;$

Statement $-1$:${s_3} = 55 \times {2^9}$

Statement $-2$: ${s_1} = 90 \times {2^8}\;$ and ${s_2} = 10 \times {2^8}$ 

  • [AIEEE 2010]