If number of terms in the expansion of ${(x - 2y + 3z)^n}$ are $45$, then $n=$
$7$
$8$
$9$
None of these
(b) $\frac{{(n + 1)(n + 2)}}{2} = 45$ or ${n^2} + 3n – 88 = 0 \Rightarrow n = 8$..
The coefficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{6}$ in powers of $x,$ is
If $\left({ }^{30} C _1\right)^2+2\left({ }^{30} C _2\right)^2+3\left({ }^{30} C _3\right)^2+\ldots \ldots+30\left({ }^{30} C _{30}\right)^2=$ $\frac{\alpha 60 !}{(30 !)^2}$, then $\alpha$ is equal to
If $A$ denotes the sum of all the coefficients in the expansion of $\left(1-3 x+10 x^2\right)^n$ and $B$ denotes the sum of all the coefficients in the expansion of $\left(1+x^2\right)^n$, then :
In the expansion of ${(1 + x)^5}$, the sum of the coefficient of the terms is
The value of $\frac{{{C_1}}}{2} + \frac{{{C_3}}}{4} + \frac{{{C_5}}}{6} + …..$ is equal to
Confusing about what to choose? Our team will schedule a demo shortly.