7.Binomial Theorem
hard

ધારો કે $\mathrm{a}=1+\frac{{ }^2 \mathrm{C}_2}{3!}+\frac{{ }^3 \mathrm{C}_2}{4!}+\frac{{ }^4 \mathrm{C}_2}{5!}+\ldots$, $\mathrm{b}=1+\frac{{ }^1 \mathrm{C}_0+{ }^1 \mathrm{C}_1}{1!}+\frac{{ }^2 \mathrm{C}_0+{ }^2 \mathrm{C}_1+{ }^2 \mathrm{C}_2}{2!}+\frac{{ }^3 \mathrm{C}_0+{ }^3 \mathrm{C}_1+{ }^3 \mathrm{C}_2+{ }^3 \mathrm{C}_3}{3!}+\ldots .$ તો $\frac{2 b}{a^2}=$...........

A

$5$

B

$8$

C

$3$

D

$7$

(JEE MAIN-2024)

Solution

$ \mathrm{f}(\mathrm{x})=1+\frac{(1+\mathrm{x})}{1 !}+\frac{(1+\mathrm{x})^2}{2 !}+\frac{(1+\mathrm{x})^3}{3 !}+\ldots . . $

$ \frac{\mathrm{e}^{(1+\mathrm{x})}}{1+\mathrm{x}}=\frac{1}{1+\mathrm{x}}+1+\frac{(1+\mathrm{x})}{2 !}+\frac{(1+\mathrm{x})^2}{3 !}+\frac{(1+\mathrm{x})^2}{4 !} $

$ \text { coef } \mathrm{x}^2 \text { in RHS : } 1+\frac{{ }^2 \mathrm{C}_2}{3}+\frac{{ }^3 \mathrm{C}_2}{4}+\ldots=\mathrm{a} $

$ \text { coeff. } \mathrm{x}^2 \text { in L.H.S. } $

$ \mathrm{e}\left(1+\mathrm{x}+\frac{\mathrm{x}^2}{2 !}\right) \ldots .\left(1-\mathrm{x}+\frac{\mathrm{x}^2}{2 !} \ldots \ldots .\right) $

$ \text { is } \mathrm{e}-\mathrm{e}+\frac{\mathrm{e}}{2 !}=\mathrm{a} $

$ \mathrm{b}=1+\frac{2}{1 !}+\frac{2^2}{2 !}+\frac{2^3}{3 !}+\ldots \ldots=\mathrm{e}^2 $

$ \frac{2 \mathrm{~b}}{\mathrm{a}^2}=8$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.