Find the complex number z satisfying the equations $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$

  • A

    $6$

  • B

    $6 \pm 8i$

  • C

    $6 + 8i,\,6 + 17i$

  • D

    None of these

Similar Questions

If $z = x + iy\, (x, y \in R,\, x \neq \, -1/2)$ , the number of values of $z$ satisfying ${\left| z \right|^n}\, = \,{z^2}{\left| z \right|^{n - 2}}\, + \,z{\left| z \right|^{n - 2}}\, + \,1\,.\,\left( {n \in N,n > 1} \right)$ is

Let ${z_1}$ and ${z_2}$ be two complex numbers with $\alpha $ and $\beta $ as their principal arguments such that $\alpha + \beta > \pi ,$ then principal $arg\,({z_1}\,{z_2})$ is given by

The modulus and amplitude of $\frac{{1 + 2i}}{{1 - {{(1 - i)}^2}}}$ are

If complex numbers $(x -2y) + i(3x -y)$ and $(2x -y) + i(x -y + 6)$ are conjugates of each other, then $|x + iy|$ is $(x,y \in R)$ 
 

If $\frac{{z - \alpha }}{{z + \alpha }}\left( {\alpha  \in R} \right)$ is a purely imaginary number and $\left| z \right| = 2$, then a value of $\alpha $ is

  • [JEE MAIN 2019]